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i. General Laws of the Attenuation of Shock Waves. In many of the uses of explosive 
processes it is important to know the characteristics of diverging shock waves at various 
distances from the seat of the energy release. The greatest decrease of pressure and the 
most effective localization of the mechanical effects of a strong explosion are produced in 
media which have a small thermal elasticity (small GrHneisen parameter) and a high com- 
pressibility. For a given energy of the explosion the first of these factors determines the 
peak pressure in the near zone, and the second determines the rate of attenuation of the 

shock wave with distance. 

There are three causes of shock wave attenuation [I]: the interaction of the discon- 
tinuity with the overtaking unloading waves, the geometrical divergence of the waves, and 
relaxation processes. According to [i] the general formula for the attenuation caused by 
the first two factors was derived in 1942-1943 by Harris for spherical cylindrical, and 
plane waves. For the more general case of a wave surface of arbitrary configuration, 
characterized by two Gaussian radii of curvature R~ and R2 and the normal N, the equation 

D ( D - - u )  + pc 2 <dp] 7~  = t(D --  u)2 - -  c:] <ON]f - -  PC~Ze (D - u) - ~  + ~,). ( 1 . 1 )  

holds, where D is the velocity of the shock front (SF), p, u, and p are respectively the 
pressure, mass velocity, and density of the medium at the SF, c is the speed of sound, dp/dN 
is the derivative determining the attenuation of the shock discontinuity, and (3p/3N)f char- 
acterizes the gradient of the pressure drop across the SF. 

For spherical (n = 3, RI = R2 = R), cylindrical (n = 2, R~ I = 0, R2 = R), and plane (n = 
i, RT I = R~ I = 0) waves, Eq. (i.i) can be written in the compact form 

where M = (D -- u)/c is the Mach number, and po is the initial density of the medium. 

For strong shock waves (P/Po = const = h) the adiabat in (p, u) coordinates has a tangent 

D' = D/u which passes through the origin. In this case (1.2) becomes 
U 

{ Olnp ~__ ( n - -  1). ( 1 . 3 )  A(M ~ + 0.5) dlnBdlnp (i - - M ~ ) \  d l n R ]  

We use (1.3) to examine the attenuation of a strong shock wave in an ideal gas, in a porous 
incompressible Kompaneits medium, and in an equilibrium two-phase mixture. The analysis 
showed that it is expedient to investigate the attenuation of shock waves in special skeleton 
systems which are modeled by a heterogeneous medium based on a two-velocity two-temperature 

model [2]. 

Explosion in an Ideal Gas. The solution of the problem of a strong explosion in an ideal 
gas found in [3] leads to familiar relations which show that the law of attenuation of the 
shock wave parameters at the front is described in different geometries (n = i, 2, 3) by the 
following relations for the pressure, the mass velocity, and the specific momentum: 

d l . p  I~, dl .  tt ~ d in [  n 
dlnt t  dhl t t  2 '  din B --~-+ 1. ( 2 . 1 )  
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The specific momentum I is defined here as the momentum .I-- I~ ('' I).! l ,(r) n ( r )v , ,_ ldr  ' contained in 
II 

the angular sector which intercepts a unit area of the wave front. 

For a spherical point explosion with an energy release E in a gas with a constant adia- 

batic exponent y and the limiting compression h = (y + i)/(~- i), the density, pressure, 
mass velocity, and specific momentum at the SF are given by the expressions 

[ C ) ,  ( 1c V '2 p = 1~ (v )  t,,,, / ,  = ,/, (;,) k/~:,) ~t - q:  (~,) - - -  

P0 Iga ) ' 

1 ~ % (19 \ - - T U  j 

(2.2) 

where the coefficients qz(Y) - -  (8125)[11(~(~,)(1, q 0)] and q2(I') = (415)[iI((y -!- l)a~(%'))]'/~ depend on 

y [3], and e(y) is the constant factor in the Sedov solution. The coefficient q3(Y) can be 
calculated numerically from the known self-similar solution [3, 4]. 

The values of the coefficients in (2.2) are listed in Table 1 for various values of y. 
A comparison of q1(Y) and the Grfineisen parameter F = y - 1 (column 4 of Table i) shows that 
they are approximately proportional, which leads to an almost linear dependence of the pressure 
at the SF on the thermal elasticity F of the medium. The magnitude of the specific momentum 

proportional to 9~/2, and, according to the data of Table I, is a monotonically increasing is 
function of y. 

For an explosion in a closed volume we are considering, the loss of momentum from the 
decrease of the initial density of the medium (decoupling [5]) occurs as a result of a con- 
traction in the time scale of the wave profile, and, accordingly, of a decrease in the time 
of action of the pressures on the wall of the closed volume. We illustrated this by using 
the finite-difference method [6] to calculate the effect of an explosion (E = 7.1 x 10 I= J) 
in a gas with a density of 1 kg/m 3 (ordinary air) and in rarefied air (po = 0.i kg/m 3) in a 

closed volume of radius R = 40 m. Figure 1 shows the time dependence of the pressure on 
the wall of a closed volume for the first (i) and second (2) cases. It can be seen that the 
repeated action of circulating waves on the average is near the static pressure of a uniform 
distribution of the energy of the explosion (dashed line). 

The expression for the gradient of the pressure drop across the SF for an arbitrary y was 
determined by comparing (1.3) and (2.1). The result is the relation 

O l u p )  = ,z(31,--t) ,'-- '27 (1, - -  I ) (2.3) 

f 1 ,e - - t  

It follows from (2.3) that the spatial width of the pressure peak does not depend on density, 
but with a decrease in y the profile is compressed, the pressure gradient is increased, and 
becomes infinite as y § i. The analytic expression derived is a direct consequence of the 
theory of a self-similar explosion [3], but is not cited in the corresponding monographs. 

3. Porous Incompressible Kompaneits Medium (PIM). The equation of state and the shock 
adiabat in a PIM in (p, V) coordinates are represented by a vertical line at a distance Vo/h 

from the origin [7], where h is the compaction parameter, equal to the ratio of the initial 
and final volumes Vo/V. Behind the SF the speed of sound in the compressed state is infinite, 
and M = 0. For a PIM Eq. (1.3) takes the form 

"g d l n B  ~ O l n R / f  ( 3 . 1 )  

F o r  l a r g e  h i n  a s e l f - s i m i l a r  w a v e  w h i c h  h a s  t r a v e r s e d  a d i s t a n c e  R a t  t h e  i n n e r  b o u n d a r y  o f  
t h e  c o m p a c t e d  l a y e r ,  t h e  p r e s s u r e  i s  z e r o .  T h e n  t h e  p r e s s u r e  g r a d i e n t  i n s i d e  a l a y e r  o f  
t h i c k n e s s  R / h  i s  c o n s t a n t  a n d  e q u a l  t o  n h p / R .  I f  h >> n - -  1 ,  we f i n d  f r o m  ( 3 . 1 )  t h a t  t h e  
relation 

d l n p / d l n R  =- -2n ,  d l n u / d l . R  = _ n ,  

d l n I / d l . l ~  = - - n  -~- t 

(3.2) 
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TABLE i 

? cz(~,) 

~,l 3,4i95 
t,15 2,2894 
1,2 1,7t98 

q,(~') . '~) i ' i  q~(v) 

0,0446 I 0,446 0,2060 
0,0650[ 0,433 0,2459 
0,0840 1 0,423 0,2773 

%(?) ? 

0,064 t,3 
0,076 t,4 
0,084 5/3 

! 

t,t436 0,1217 I 0,406 
0,85t0 0,1567 I 0,392 
0,4936 0,2431 0,365 

q"(~/) I v,(~,) 

0,3253 1 0,095 
0,3613 [ 0,106 
0,42701 0,t20 

p, i'Ik'a 

Io ~ 

I0 ~ ~ - , _ 

I 

I0 ~ I 
0 IO 20 t,,msec 

F i g .  1 

[ 

Io' i T=8oooo 
\ 

10 ~ - 2 ~ . . ~  ~ \ \  

~o" \ 
10 -~" IO -2 iO" ~' ~0 o. 

V, m~'/kg 
F i g .  2 

is fairly accurately satisfied. It follows from (3.2) that the pressures, velocities, and 
momenta are damped very much more rapidly in a PIM with a large h than in an ideal gas. 
In particular, for a spherical shock wave we have instead of (2.2) 

p ,~  l l R  ~ u ,-,, I I R  8, I ,~, i l l ? "  (3.3) 

Relations (3.3) can be used to describe the results of experiments on explosions in media 
such as snow, vermiculite, water foam, etc. In particular, Eq. (3.3) naturally accounts for 

the empirical relation found in [8] for the decay of momentum in a foamy medium. Questions 
of the attenuation of shock waves in foamy media were studied in detail experimentally and 

theoretically in [8-10]. 

4. Equilibrium Vapor--Liquid Medium. Let us consider an equilibrium two-phase mixture 
of.water and water vapor. Adiabats calculated along the equilibrium curve of water [ii] are 
shown in Fig. 2. A similar form of the adiabats was obtained in [12, 13] from equations of 
state of water developed by the authors of these papers. Adiabats 1-4 correspond to initial 
densities of the mixture Po = i0, 5, 4, and 1 kg/m 3. Adiabats of type 1 correspond to a pre- 
ponderant weightcontent of water, and are characterized by an anomalously small GrNneisen 
parameter (F ~ 0.02) and a very large value of the limiting compression h ~ i00 (h = 1 + 2/F). 
Such behavior of a medium is due physically to condensation of vapor in the shock wave, which 

decreases the GrNneisen ratio. For adiabats of type 4 with a preponderant vapor content 
there is a smaller decrease of the GrHneisen parameter as a result of the absorption of the 
latent heat of vaporization, in spite of some increase during the evaporation of the molar 
content of the gaseous phase. On the vertical branch of adiabat 1 D ~ c, and D -- u = D/h. 
Such values of D -- u and c lead to vanishingly small Mach numbers. 

As a result, for certain initial densities the attenuation of strong shock waves in 
equilibrium two-phase mixtures at pressures below the critical value Pc can be described by 
the PIM model. 

Actually, three flow regions develop for an explosion in such a two-phase medium: the 
near zone where p >> Pc and the material behaves like an ideal gas; the intermediate layer 
where the pressure is decreased to p < Pc; the outer layer in which the PIM model is realized, 
i.e., Eqs. (3.3) are satisfied in the spherical case. 

Figure 3 shows some results for a two-phase vapor--liquid lithium mixture with a type 4 
adiabat calculated by the method of [6] using a model equation of state constructed by the 
authors. Curve 1 characterizes the variation of pressure at the SF in an ideal gas (y = 1.4) 
for a point explosion (E = 0.84 x 1012 J). Curve 2 determines a substantially stronger 
attenuation in the two-phase lithium medium (Po = 1 kg/m a) located in the concentric region 

R ~ i0 m. 

674 



Q, MPa 

/0 f 

, o ~  . . . . .  ] 
IO 20 5 0  R, m 

Fig .  3 

p, MPa ~ . . . . . .  

' /I "% ] l 
4 '~,', 0,4 L - ~  

0 0,5 1,0 45  R, m 

Fig. 4 

5. Attenuation of Shock Waves in a Stationary Skeleton System. The formation of 
internal superheated regions decreases the attenuating properties of the porous incompressible 
and two-phase media considered above. Substantial attenuation of a shock wave is achieved by 
introducing into its path a region containing a streamlined stationary skeleton which 
elongates the SF and transforms the one-dimensional gas flow into a system of jets which are 
slowed down in their encounter with the elements of the skeleton. 

In the first approximation such a system is modeled mathematically by a process of pene- 
tration of a shock wave into a heterogeneous air-suspended layer with stationary ("frozen") 
particles, which is naturally described by the two-velocity two-temperature model [2]. Cal- 
culations were performed by the method of coarse particles [14]. 

The conventional assumptions about the mechanics of multiphase media were assumed to 
hold for the air-supported layer: The particles are spherical and monodisperse; the dis- 
tances between particles are small in comparison with the characteristic scales of flows; the 
effects of viscosity and heat conduction are important only in the interaction of the phases; 
there are no collisions between particles, which are not deformed or crushed. We solve the 
following problem to illustrate the attenuating action of a skeleton system. A plane wave 
with a triangular velocity profile, a wavelength of 0.45m, M = 4.17, and a maximum pressure of 
2 MPa (counterpressure 0.i MPa) is incident on an air-supported layer of stationary iron 
particles 1.5 m thick in front of an obstacle. The particle diameter d was varied from 60 to 
1200 ~m, and the volume content of the particles ~v from 0. i to 6%, which corresponds to a 
variation of the lattice parameter d/l of the system from 8 to 2, where I is the distance be- 
tween particle centers. We studied the variation of the parameters in an advancing shock 
wave and in one reflected from a rigid wall, including the pulsed effect. We showed that the 
attenuation of a shock wave increases with an increase in the concentration and a decrease in 
the size of the particles. Figure 4 shows pressure profiles in the advancing wave at various 
times for particles with d = 60 pm for ev = 0.1% (the dashed curves are profiles for moving 
particles), and also the variation of the peak pressure of the shock wave with distance for an 
ideal gas without particles (y = 1.4) (dash-dot curve), moving (dashed curve), and stationary 
(solid curve) particles. There is very strong damping of the pressure in the air-supported 
layer (the cases of moving and stationary particles are negligibly different from one another). 
The pressure in the shock wave reflected from the wall is decreased by a factor of ii, and 
the magnitude of the maximum impulse of the express pressure is smaller by a factor of 4 than 
in a pure gas. Nearly the same result is obtained for a simultaneous increase of the particle 
size and volume content by an order of magnitude. 

6. Skeleton System with an Evaporating Component. The mechanical energy of an explosion 
is completely absorbed by introducing into a skeleton system an evaporating component in the 
form of drops, foam, or aerosols with a large heat of vaporization of the particles. 

For a latent heat of vaporization 8 the minimum necessary mass m of the evaporating compo- 
nent for an explosion of energy E is given approximately by the relation 

m : E/O. (6. i) 

Numerical estimates based on (6.1) show that m = 0.07E for a graphite (carbon) aerosol, 
m = 0.2E for lithium, and m : 2E for water, where E is in tons of TNT equivalent, and m is 
in tons. 
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The use of a skeleton System with evaporating components can ensure an effective solu- 
tion of a number of practically important problems such as the creation of technological ex- 
plosion chambers with minimum wall thicknesses, the shielding of pulsed reactors against 
mechanical and radiation damage [15], the blocking of the propagation of detonation waves in 
rock workings [16], etc. 

The authors thank R. I. Nigmatulin for a discussion of the results of the present work, 
and A. G. Kutushev for performing the calculations with the two-velocity two-temperature 
model. 
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